I этап - "Решение неполных квадратных уравнений".
II этап - "Решение полных квадратных уравнений".
III этап - "Решение приведенных квадратных уравнений".
На первом этапе рассматриваются неполные квадратные уравнения. Так как сначала математики научились решать неполные квадратные уравнения, поскольку для этого не пришлось, как говорится, ничего изобретать. Это уравнения вида: ах2 = 0, ах2 + с = 0, где а ≠ 0 и с≠ 0, ах2 + bх = 0, где а ≠ 0 и
b ≠ 0. Рассмотрим решение несколько таких уравнений:
1. Если ах2 = 0. Уравнения такого вида решаются по алгоритму:
1) найти х2;
2) найти х.
Например, 5х2 = 0. Разделив обе части уравнения на 5 получается: х2 = 0, откуда х = 0.
2. Если ах2 + с = 0, с ≠ 0 Уравнения данного вида решаются по алгоритму:
1) перенести слагаемые в правую часть;
2) найти все числа, квадраты которых равны числу с.
Например, х2 - 5 = 0, Это уравнение равносильно уравнению х2 = 5. Следовательно, надо найти все числа, квадраты которых равны числу 5. Таких чисел только два
и -
. Таким образом, уравнение х2 - 5 = 0 имеет два действительных корня: x1 =
, x2 = -
и других действительных корней не имеет.
3. Если ах2 + bх = 0, b ≠ 0. Уравнения такого вида решаются по алгоритму:
1) вынести общий множитель за скобки;
2) найти x1, x2.
Например, х2 - 3х = 0. Перепишем уравнение х2 - 3х = 0 в виде х (х - 3) = 0. Это уравнение имеет, очевидно, корни x1 = 0, x2 = 3. Других корней оно не имеет, ибо если в него подставить вместо х любое число, отличное от нуля и 3, то в левой части уравнения х (х - 3) = 0 получится число, не равное нулю.
Итак, данные примеры показывают, как решаются неполные квадратные уравнения:
1) если уравнение имеет вид ах2 = 0, то оно имеет один корень х = 0;
2) если уравнение имеет вид ах2 + bх = 0, то используется метод разложения на множители: х (ах +b) = 0; значит, либо х = 0, либо ах + b = 0. В итоге получается два корня: x1 = 0; x2 = -
;
3) если уравнение имеет вид ах2 + с = 0, то его преобразуют к виду
ах2 = - с и далее х2. = -
В случае, когда -
< 0, уравнение х2 = -
не имеет действительных корней (значит, не имеет корней и исходное уравнение ах2 + с = 0). В случае, когда -
> 0, т.е. -
= m, где m>0, уравнение х2 = m имеет два корня
=
,
= -
, в этом случае допускается более короткая запись
=
. Таким образом, неполное квадратное уравнение может иметь два корня, один корень, ни одного корня.
Читайте также:
Анализ и оценка результатов
формирования познавательного интереса школьников в учебной и внеучебной
деятельности по литературному чтению
На контрольном этапе эксперимента (апрель 2013 г.) было проведено повторное диагностирование в экспериментальном и контрольном классах. Для определения уровня сформированности познавательного интереса были использованы те же методики, что и на констатирующем этапе эксперимента. Обработанные результ ...
Современное состояние практической компьютеризации процесса
обучения
Определить состояние дел в той или иной сфере деятельности всегда достаточно трудно. Однако в таком вопросе, как компьютеризация, есть один легко учитываемый фактор, который достаточно ясно может охарактеризовать картину в целом. Это - показатель технической обеспеченности, другими словами - наличи ...
Особенности педагогической профессии
Своеобразие педагогической профессии. Принадлежность человека к той или иной профессии проявляется в особенностях его деятельности и образе мышления. По классификации, предложенной Е.А. Климовым, педагогическая профессия относится к группе профессий, предметом которых является другой человек. Но пе ...