7 класс
§4 Сумма углов треугольника.
Задача №25. Один из углов равнобедренного треугольника равен 70о. Найдите остальные углы. Сколько решений имеет задача?
8 класс
§6 Четырёхугольники.
Задача №32. В равнобедренный прямоугольный треугольник вписан прямоугольник так, что две его вершины находятся на гипотенузе, а две другие – на катетах. Чему равны стороны прямоугольника, если известно, что они относятся как 5:2, а гипотенуза треугольника равна 45 см.?
§7 Теорема Пифагора.
Задача №4. Две стороны прямоугольного треугольника равны 3м. и 4м. Найти третью сторону. (два случая)
§8 Декартовы координаты на плоскости.
Задача №27. Найдите центр окружности на оси Х, если известно, что окружность проходит через точку (1;4) и радиус окружности равен 5.
3. Новый учебник по геометрии для общеобразовательных школ реализует авторскую, наглядно – эмпирическую концепцию построения школьного курса геометрии. Это выражается прежде всего в отказе от аксиоматического подхода. Больше внимания по сравнению с традиционными учебниками уделено методам решения геометрических задач. Система задач дифференцирована по уровням сложности. Сам автор пишет в введении: "геометрия- это совсем не математика. Во всяком случае, это совсем не та математика, с которой до сих пор вам приходилось иметь дело. Геометрия- это предмет для тех, кому нравится фантазировать, рисовать и рассматривать картинки, кто умеет наблюдать, замечать и делать выводы. Геометрия- необычайно важный и интересный предмет, и любой человек может найти в ней уголок по душе". Из такого подхода вытекает относительное обилие задач "на выбор", то есть с геометрическими параметрами. В учебнике Шарыгина содержатся следующие задачи:
7 класс.
§2.1 Геометрия прямой линии.
Задача №8. в) На прямой расположены точки A,B,C и D. Найдите длину отрезка с концами в серединах AB и CD, если AC = 5, BD = 7.
Задача №19. Точка В лежит на отрезке АС, АВ = 2, ВС = 1. Укажите на прямой АВ все точки М, для которых АМ + ВМ = СМ.
§2.2. Основные свойства прямой на плоскости.
Задача №1. На сколько частей могут разделить плоскость две прямые?
§2.3 Плоские углы.
Задача №7. б) Чему может быть равен угол АОС, если угол АОВ = 161о, угол ВОС = 172о?
Задача №9. Чему может быть равен угол АОD, если угол АОВ = , угол BOC =
и угол COD =
, где: а)
= 34о,
= 33о,
= 32о; б)
= 78о,
= 79о,
= 83о;
= 132о,
= 161о,
= 141о?
§2.4 Плоские кривые, многоугольники, окружность.
Задача №1.б) В скольких точках прямая может пересечь границу четырёхугольника? (считаем, что прямая не проходит через вершины)
§3.3 Неравенства в треугольнике. Касание окружности с прямой и окружностью.
Задача №19. На плоскости имеются две окружности. Чему равен радиус окружности, касающейся данных окружностей и имеющей центр на прямой, проходящей через их центры, если радиусы данных окружностей и расстояния между их центрами соответственно равны: а) 1,3,5; б) 5,2,1; в) 3,4,5? Сколько решений имеет задача?
Читайте также:
Компетенция ПКПП-9
Компетенция ПКПП-9 – это профессиональная компетенция в деятельности по психолого-педагогическому сопровождению дошкольного, общего, дополнительного и профессионального образования: «готов руководить проектно-исследовательской деятельностью школьников». Под компетенцией ПКПП-9 понимается способност ...
Сущность и специфика педагогического сопровождения в осуществлении
коллективной творческой деятельности учащихся
Коллективное творчество – наиболее распространенная форма занятий с учащимися. Но для того, чтобы оно было продуктивным и успешным, должны быть поставлены четкие цели и задачи, а содержание направлено на усвоение культурных ценностей, достижение идеала во взаимоотношениях в процессе деятельности, о ...
Особенности развития одаренных детей в дошкольном возрасте
Государственная система работы с одаренными детьми включает несколько уровней. Основой этой системы является детский сад и школа, охватывающие наиболее широкий круг детей. На уровне детского сада необходимым условием является наличие навыков распознавания одаренности своих воспитанников, создание д ...